Übungsblatt 4 zur Experimentalphysik I

Sommersemester 2014 - Übungsblatt 4 / Abgabe am 19. bzw. 20.05.14

Aufgabe 4.1 Luftkissenschiene

(Präsenzaufgabe)

Ein Wagen der Masse $M=200~{\rm kg}$ wird durch die Fallbeschleunigung eines Massestücks m bewegt. M und m sind durch ein Seil verbunden das über eine Umlenkrolle läuft. Der Aufbau ist aus der Vorlesung bekannt (Demonstration: Luftkissenschiene). Wie groß ist die Masse m, wenn der Wagen nach Durchlaufen der Strecke $s=12~{\rm m}$ die Geschwindigkeit $v=5~{\rm m}$ hat?

Aufgabe 4.2 Kiste mit Reibung

(Präsenzaufgabe)

Eine Kiste der Masse $m = 10^3$ kg soll auf ein Podest der Höhe h = 2 m befördert werden. Dies kann auf zwei unterschiedlichen Wegen geschehen:

- a) Durch anheben.
- b) Durch schieben auf einer geneigten Ebene mit $\theta = 20^{\circ}$ und $\mu_k = 0, 3$.

Wie groß ist die benötigte Energie?

Aufgabe 4.3 Flugzeug am Seil

(Präsenzaufgabe)

Ein Flugzeug der Masse m=0.9 kg wird von einem Seil gehalten und fliegt mit der Geschwindigkeit $v_1=22~\frac{\rm m}{\rm s}$ auf einer horizontalen Kreisbahn mit Radius $r_1=16$ m. Das Halteseil wird auf einen Radius von $r_2=14$ m eingezogen, wodurch das Flugzeug beschleunigt. Die Zugkraft im Seil vervierfacht sich. Welche Arbeit wurde verrichtet?

Aufgabe 4.4 Gleichmäßig beschleunigtes Auto 1

(2 Punkte)

Ein Auto der Masse m = 1200 kg fährt gleichmäßig beschleunigt an und legt in den ersten 10 Sekunden die Wegstrecke s = 150 m zurück. Berechen Sie die mechanische Arbeit, die der Motor dabei verrichtet.

Aufgabe 4.5 Skiabfahrt

(4 Punkte)

Ein Skifahrer erlangt bei einer s=100 m langen Schussfahrt mit h=40 m Höhenunterschied eine Endgeschwindigkeit von $\nu=68,4$ $\frac{\mathrm{km}}{\mathrm{h}}$. Berechnen Sie den Gleitreibungskoeffizienten μ_k .

Aufgabe 4.6 Gleichmäßig beschleunigtes Auto 2

(4 Punkte)

Ein Auto der Masse m=1000 kg wird auf einer Steigung von 5% in t=20 s aus der Geschwindigkeit $v_1=36$ $\frac{\mathrm{km}}{\mathrm{h}}$ auf die Geschwindigkeit $v_1=72$ $\frac{\mathrm{km}}{\mathrm{h}}$ beschleunigt. Berechnen Sie

- a) die Beschleunigungsarbeit W_b
- b) die Arbeit W_f zur Überwindung des Fahrwiderstands $F_w = 300 \text{ N}$
- c) die Hubarbeit W_h
- d) die gesamte aufzubringende Arbeit W_{ges}

Übungsblatt 4 zur Experimentalphysik I

Name, Vorname: ______ Matrikelnummer: _____

Aufgabe 4.7 Kraft und Potential

(2 Punkte)

Die potentiellen Energie eines Systems sei gegeben durch

$$E_{pot}(x) = -\frac{ax}{b^2 + x^2},$$

wobei a und b Konstanten sind. Bestimmen Sie die Kraft F als Funktion von x.

Aufgabe 4.8 Freier Fall und Feder

(4 Punkte)

Ein Ball der Masse m=2,6 kg startet aus der Ruhe heraus und fällt vertikal eine Strecke von h=55 cm, bevor er auf eine vertikal gerichtete, entspannte Feder trifft, die er um d=15 cm zusammendrückt. Bestimmen Sie die Geschwindigkeit des Balls unmittelbar vor dem Auftreffen auf die Feder, sowie Federkonstante k.